DEA Models available in MaxDEA X

(MaxDEA X包含的DEA模型)

(如果您在列表中没有找到需要的模型,请联系我们)

 

Model Type (模型分类)

1)          Envelopment Model (包络模型)

2)          Multiplier Model (乘数模型)

3)          FDH 模型

 

Distance to measure efficiency (用于测量效率的距离类型)

1)          Radial (CCR 1978; BCC 1984) (径向距离)

2)          Maximum Distance to Frontier (ERM, Enhanced Russel Measure, Pastor, Ruiz, and Sirvent 1999; SBM, Slacks-based Measure, Tone 2001) (至强有效前沿的最远距离,即SBM模型)

3)          Minimum Distance to Weak Efficient Frontier (Charnes, Roussea, and Semple1996) (至弱有效前沿的最近距离)

4)          Minimum Distance to Strong Efficient Frontier (Closest Target), with full features: strong monotonicity algorithm; CRS, VRS, NIRS and NDRS; Non-oriented, Input-oriented and Output-oriented. (至强有效前沿的最近距离,MinDS距离)

               Ref. to  (J. Aparicio et al., 2007; G. R. Jahanshahloo et al., 2012; Gholam Reza Jahanshahloo, Roshdi, & Davtalab-Olyaie, 2013; Olyaie, Roshdi, Jahanshahloo, & Asgharian, 2014; J Aparicio et al., 2017; Zhu et al., 2018; Zhu et al., 2022)

5)          Directional Distance Function (Chambers, Chung, and Färe 1996; Chung, Färe, and Grosskopf 1997) (方向距离函数)

Direction Vector can be (方向向量类型)

a): ( -|x0|, |y0|, -|b0| )'

b): ( -|x̅|, |y̅|, -|b̅| )'

c) Vector (1, 1, ..., 1)'

d): Range (RDM, Portela, Thanassoulis, and Simpson 2004)

e) Customized (same for all DMUs) (为所有DMU自定义相同的方向向量)

f) Customized (DMU specific) (为各DMU自定义不同的方向向量)

6)          A Series of Weighted Additive Models (加权加性距离)

a) Simple Additive model: Weights = (1, 1, 1, ...) (不加权)

b) Normalized Weighted Additive (Lovell and Pastor 1995) (标准化权重)

c) Weights = 1/|x0|, 1/|y0|

d) Weights = 1/|x̅|,  1/|y̅|

e) Range Adjusted Measure (RAM, Cooper, Park, and Pastor 1999) (RAM模型)

f) Bounded Adjusted Measure (BAM, Cooper, Pastor, Borras, Aparicio, and Pastor 2011) (BAM模型)

g) Directional Slacks-based Measure (DSBM, Fukuyama and Weber 2009) (定向SBM模型)

h) Customized Weights (same for all DMUs) (为各DMU自定义相同的权重)

i) Customized Weights (DMU specific) (为各DMU自定义不同的权重,使用此类型实现一般化的“非径向方向距离函数”,即NDDF模型)

7)          Hybrid Distance(Radial and SBM Measure): (EBM, Epsilon-based Meaure,Tone and Tsutsui 2010) (EBM模型)

8)          Cost (成本效率)

9)          Revenue (收益效率)

 

Orientation to measure efficiency (模型导向)

1) Input-oriented (投入导向)

2) Output-oriented (投入导向)

3) Non-oriented (非导向)

 

RTS to measure efficiency (规模报酬)

1) Constant returns to scale (CRS) (规模报酬不变)

2) Variable returns to scale (VRS) (规模报酬可变)

3) Non-increasing returns to scale (NIRS) (规模报酬非增)

4) Non-decreasing returns to scale (NDRS) (规模报酬非减)

5) Decomposition of Efficiency or TFP Index (效率或生产率指数分解)

 

TFP Index: Malmquist Index and Hicks-Moorsteen Index (also called HMB Index)

(全要素生产率指数: Malmquist指数和HMB指数)

a) Adjacent Malmquist (相邻参比)

b) Fixed Malmquist (固定参比)

c) Global Malmquist (全局参比)

d) Sequential Malmquist (序列参比)

e) Window-Malmquist (Adjacent) (相邻窗口参比)

f) Window-Malmquist (Fixed) (固定窗口参比)

g) Global with Sequential Malmquist (全局和序列参比)

TFP index decomposition: Efficiency Change (catch-up), Technological Change (frontier shift), Scale Efficiency Change, biased Technological Change, TC=OBTC*IBTC*MATC (Fare et al 1997)

Three types of indices can be computed: Index(t-1, t); Index (t-n, t) : n is user-defined; Index (t0, t): t0 is the initial period.

 

Window DEA (窗口DEA)

 

Cluster model (群组参比模型,广义DEA模型)

a) Self-benchmarking (自我参比)

b) Cross-benchmarking (交叉参比)

c) Downward-benchmarking (向下参比)

d) Upward-benchmarking (向上参比)

e) Lower-adjacent-benchmarking (下方临群参比)

f) Upper-adjacent-benchmarking (上方临群参比)

g) Window-benchmarking (窗口参比)

h) Fixed-benchmarking (固定参比)

 

Other models

1) Super-efficiency model (超效率模型)

2) Modified SBM (Sharp et al 2007) (MSBM模型)

3) Modified SBM (Lin et al 2019) (MSBM模型)

4) Cross efficiency model (交叉效率模型)

Second-stage methods are available (第2阶段方法):

Minimize/Maximize the trade balance of other DMUs as a whole

a) Blanket Benevolent (Type I in Doyle and Green 1995)

b) Blanket Aggressive (Type I in Doyle and Green 1995)

Maximize/Minimize the cross-efficiency of other DMUs as a whole

c) Blanket Benevolent (Type II in Doyle and Green 1995)

d) Blanket Aggressive (Type II in Doyle and Green 1995)

Maximize/Minimize the cross-efficiency of other DMUs as a whole

e) Blanket Benevolent (Ruiz (2013))

f) Blanket Aggressive (Ruiz (2013))

Maximize/Minimize the cross-efficiency of a customized virtual DMU

g) Benevolent (customized)

h) Aggressive (customized)

5) Game Cross Efficiency model: Nash Equilibrium model (Liang, et al 2008; Wu, et al 2009) (博弈交叉效率模型)

6) Undesirable outputs, desirable inputs (非期望产出(越少越好的产出) 和 期望投入(越多越好的投入))

7) Nondiscretionary input/output model (不可随意控制的投入产出)

8) Preference (weighted) model (Set Input/output Weights) (偏好(加权)模型,设置投入产出权重)

9) Restricted multiplier model (assurance region model, trade-offs between inputs and outputs) (权重比值约束模型)

 

What's more important, MaxDEA X provides nearly all possible combinations of the above models.

(最为重要的是, MaxDEA X 提供了尽可能多的上述模型选项的组合应用。)